1,120 research outputs found

    Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver

    Full text link
    Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of the errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.Comment: 33 pages, 14 figure

    An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes

    Full text link
    In current computer architectures, data movement (from die to network) is by far the most energy consuming part of an algorithm (10pJ/word on-die to 10,000pJ/word on the network). To increase memory locality at the hardware level and reduce energy consumption related to data movement, future exascale computers tend to use more and more cores on each compute nodes ("fat nodes") that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. As a consequence, Particle-In-Cell (PIC) codes will have to achieve good vectorization to fully take advantage of these upcoming architectures. In this paper, we present a new algorithm that allows for efficient and portable SIMD vectorization of current/charge deposition routines that are, along with the field gathering routines, among the most time consuming parts of the PIC algorithm. Our new algorithm uses a particular data structure that takes into account memory alignement constraints and avoids gather/scatter instructions that can significantly affect vectorization performances on current CPUs. The new algorithm was successfully implemented in the 3D skeleton PIC code PICSAR and tested on Haswell Xeon processors (AVX2-256 bits wide data registers). Results show a factor of ×2\times 2 to ×2.5\times 2.5 speed-up in double precision for particle shape factor of order 11 to 33. The new algorithm can be applied as is on future KNL (Knights Landing) architectures that will include AVX-512 instruction sets with 512 bits register lengths (8 doubles/16 singles).Comment: 36 pages, 5 figure

    Attosecond Lighthouses: How To Use Spatiotemporally Coupled Light Fields To Generate Isolated Attosecond Pulses

    Get PDF
    International audienceUnder the effect of even simple optical components, the spatial properties of femtosecond laser beams can vary over the duration of the light pulse. We show how using such spatiotemporally coupled light fields in high harmonic generation experiments (e.g., in gases or dense plasmas) enables the production of attosecond lighthouses, i.e., sources emitting a collection of angularly well-separated light beams, each consisting of an isolated attosecond pulse. This general effect opens the way to a new generation of light sources, particularly suitable for attosecond pump-probe experiments, and provides a new tool for ultrafast metrology, for instance, giving direct access to fluctuations of the carrier-envelope relative phase of even the most intense ultrashort lasers

    Novel Josephson effects between multi-gap and single-gap superconductors

    Full text link
    Multi-gap superconductors can exhibit qualitatively new phenomena due to existence of multiple order parameters. Repulsive electronic interactions may give rise to a phase difference of π\pi between the phases of the order parameters. Collective modes due to the oscillation of the relative phases of these order parameters are also possible. Here we show that both these phenomena are observable in Josephson junctions between a single-gap and a multi-gap superconductor. In particular, a non-monotonic temperature dependence of the Josephson current through the junction reveals the existence of the π\pi phase differences in the multi-gap superconductor. This mechanism may be relevant for understanding several experiments on the Josephson junctions with unconventional superconductors. We also discuss how the presence of the collective mode resonantly enhances the DC Josephson current when the voltage across the junction matches the mode frequency. We suggest that our results may apply to MgB2_2, 2H-NbSe2_2, spin ladder and bilayer cuprates.Comment: 4 pages, 2 figure

    Correlated defects, metal-insulator transition, and magnetic order in ferromagnetic semiconductors

    Full text link
    The effect of disorder on transport and magnetization in ferromagnetic III-V semiconductors, in particular (Ga,Mn)As, is studied theoretically. We show that Coulomb-induced correlations of the defect positions are crucial for the transport and magnetic properties of these highly compensated materials. We employ Monte Carlo simulations to obtain the correlated defect distributions. Exact diagonalization gives reasonable results for the spectrum of valence-band holes and the metal-insulator transition only for correlated disorder. Finally, we show that the mean-field magnetization also depends crucially on defect correlations.Comment: 4 pages RevTeX4, 5 figures include

    Early lactation ratio of fat and protein percentage in milk is associated with health, milk production, and survival.

    Get PDF
    An observational study was conducted on 1,498 cows in 3 large Italian dairy farms. The objective of the study was to evaluate the prognostic value of early lactation fat-to-protein ratio in milk. In all 3 herds, an intensive herd health monitoring program was being practiced that included weekly visits and extensive data collection on health, reproduction, production, and culling. A milk sample was collected from all cows at approximately 7 d postpartum and the ratio of fat-to-protein percentage in this milk sample was measured. Animals with a fat-to-protein ratio in early lactation greater than 2.0 showed an increase in postpartum diseases such as retained placenta, left-displaced abomasums, metritis and clinical endometritis. We also observed a decrease in early lactation milk production but this was limited to cows in lactation 2 and higher when the fat-to-protein ratio was greater than 2.0 in the early postpartum milk sample. Finally, an increased risk of being culled from the herd was observed, with the risk of culling increasing with increasing fat-to-protein ratio in the early lactation milk sample. No effect of fat-to-protein ratio was found on the incidence of clinical mastitis in the 3 herds. From this study, we conclude that analyses of milk components in early postpartum (6-9 days in milk), particularly the ratio of fat-to-protein percentage, is a valuable indicator of lipo-mobilization and the negative energy balance status in postpartum cows. Because a single milk sample is sufficient to provide valuable information, we suggest that this is a valuable addition to herd health programs on dairy farms
    corecore